The skeletons of free distributive lattices
نویسندگان
چکیده
منابع مشابه
Products of Skeletons of Finite Distributive Lattices
We prove that the skeleton of a product of finitely many finite distributive lattices is isomorphic to the product of skeletons of its factors. Thus, it is possible to construct finite distributive lattices with a given directly reducible skeleton by reducing the problem to the skeleton factors. Although not all possible lattices can be obtained this way, we show that it works for the smallest ...
متن کاملFree Distributive Completions of Partial Complete Lattices
The free distributive completion of a partial complete lattice is the complete lattice that it is freely generated by the partial complete latticèin the most distributive way'. This can be described as being a universal solution in the sense of universal algebra. Free distributive completions generalize the constructions of tensor products and of free completely distributive complete lattices o...
متن کاملChain Conditions in the Distributive Free Product of Lattices
1. Introduction. A typical result of this paper is the following. Let Lt, i e I be distributive lattices satisfying the countable chain condition. Then the free product L of these lattices also satisfies the countable chain condition. To be able to state the general result we need some notations. Let trt be an infinite cardinal. A poset (partially ordered set) P is said to satisfy the m-chain c...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کامل“ Complete - Simple ” Distributive Lattices
It is well known that the only simple distributive lattice is the twoelement chain. We can generalize the concept of a simple lattice to complete lattices as follows: a complete lattice is complete-simple if it has only the two trivial complete congruences. In this paper we show the existence of infinite complete-simple distributive lattices. “COMPLETE-SIMPLE” DISTRIBUTIVE LATTICES G. GRÄTZER A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1991
ISSN: 0012-365X
DOI: 10.1016/0012-365x(91)90017-v